
smartclientandroid	2.3.1-dev-2

smartclip's	native	SDK	for	Android	apps

Version	history

Contents
Introduction
Features

AdView-Settings	and	configuration
Providing	neccessary	information
Configuring	the	environment
Event	Callback
Retrieving	ad	and	display	information
Separation	clips
Sequencing

Implementation	guide

Introduction
The	smartclip	SDK	for	Android	is	a	native	SDK	to	display	instream	and	out-stream	advertising	in
native	Android	and	FireTV	apps.	It	allows	to	display	various	types	of	video	advertisement	formats.

Features

Control	and	display	of	ads

In	the	regular	instream	settings	a	video	player	is	attached	to	the	SDK	to	display	advertisement.	It
requires	the	implementation	of	an	interface,	which	will	serve	as	connection	to	the	ad	server.

It	is	possible	to	use	one	or	more	ad	tags	for	one	ad	slot	and	to	configure	different	types	of
additional	separation	clips.	In	addition	a	number	of	additional	parameters	can	be	set	for	the	specific
environment	to	pass	information	to	the	ad	server	and	to	control	requested	resources.

In	an	out-stream	scenario,	based	on	a	standalone	video	player	embedded	in	regular	content,	the
SDK	displays	ads	and	offers	a	number	of	settings	to	control	appearance	and	behaviour	of	the	app.

If	the	product	already	provides	streams,	advertising	is	embedded	in	the	existing	player,	providing
detailed	interfaces	for	a	seamless	integration	of	content	and	ads.	In	this	scenario	the	complete
playback	stack	itself	remains	under	the	control	of	the	publisher.

Providing	neccessary	information

The	interface	for	the	smartclip	SDK	allows	controlling	environment	and	tracking	information.

Overwriting	Bundle-ID	(for	debugging	and	testing	purposes)
Supplying	reporting/tracking	information
Supplying	unique	advertising	id
Adding	metadata	on	content	context

For	a	full	list	of	possible	information	settings	please	refer	to	the	KDoc	of	the	project.

Setting	the	advertising	ID	as	provided	by	Google

In	case	the	advertising	ID	is	used	inside	the	app,	it	should	be	passed	into	to	the	SDK.
Since	the	field	is	not	validating	it	is	also	possible	to	generate	another	identifier	within	the	app,	which
can	be	used	as	means	of	identification	and	tracking.
The	SDK	relies	on	that	information	and	does	not	try	to	get	a	value	from	the	system.	This	is
because	using	advertising	ID	requires	special	attention	to	the	permissions	during	the	app
submission	process	to	the	Play	Store.

Configuring	the	environment

Desired	bitrate	setting
Desired	mime-types
Set	information	on	network/connection	stability

Desired	bitrate	setting

It	is	possible	to	override	the	default	bitrate	settings	for	ad	replay	by	setting	a	desired	bitrate.	If	the
exact	value	is	not	present	in	the	ad	response,	the	SDK	is	going	to	search	for	a	lower	bitrate	media
file	and	only	if	none	is	available,	the	SDK	will	select	a	media	file	of	higher	bitrate.	The	bitrates	should
consider	the	display	capabilities	of	the	device	and	current	network	settings.

The	actually	displayed	media	file	can	only	be	selected,	if	the	campaign	provides	one	for	the
correspoding	bitrate.

Configure	media	file	selection	based	on	mime-type

Since	the	support	for	different	formats	varies	on	certain	platforms	it	is	advised	to	include	a	list	of
preferred	mime-types,	which	supports	the	selection	process	after	parsing	of	an	ad	server
response.	One	example	is	the	support	of	WebP	formats	on	certain	devices	such	as	the	FireTV	stick.

Event	Callback

During	an	ad	slot	or	ad	session	the	SDK	will	inform	about	a	number	of	state	information	which	can
be	accessed	by	registering	a	listener/delegate	to	handle	callbacks.	This	will	allow	the	app	to	interact
properly	with	the	advertising	content	and	integrate	with	the	app's	control	flow.

If	there	is	a	registered	listener	for	the	SxEventProvider	it	will	receive	all	status	transitions	that
SxAdInfo,	SxPublicAd	or	SxPublicAdSlot	goes	through.	Its	main	purpose	is	to	aid	reacting	to
media	playback	states	and	possible	errors.

Retrieving	ad	and	display	information

Utilizing	SxEventProvider	the	application	will	get	information	about	the	current	state	of	the	ad
player.	It	starts	with	the	signal	of	ONADTAG_PARSED,	the	interpretation	of	the	ad	server	response,
and	will	iterate	through	the	individual	ads	that	are	part	of	the	slot.	Callbacks	follow	the	standard
VAST	events,	signalling	quartiles	and	additional	information	on	the	type	of	the	ads.	Please	refer	to
the	KDoc	parts	to	get	information	on	all	properties/methods	available	for	the	SxAdInfo,
SxPublicAd	and	SxPublicAdSlot.

Separation	clips

There	are	some	advanced	options	available	to	cover	more	complex	ad	break	scenarios	with
multiple	ads	in	one	single	ad	slot.	Separation	clips	can	be	inserted	to	signify	the	beginning	or	end	of
an	ad	break,	as	well	as	to	separate	sponsoring	ads	from	regular	advertisement.

Sequencing	(instream)

The	sequencing	component	allows	to	create	a	schedule	for	a	complete	content	session.	It	will
automatically	create	and	start	ad	slots,	as	well	as	notify	the	code	if	any	seek	or	fast-forward/-
backward	actions	are	detected.	In	that	case	the	SDK	returns	respective	ad	slots	and	allows	to	reset
the	mapping.	It	can	be	used	for	various	scenarios	-	even	a	quite	simple	preroll-	configuration,	as	it
will	take	care	required	monitoring	and	reporting	tasks.

Implementation	guide

Android

The	SDK	supports	Android	platform	API	level	19	and	above,	as	well	as	FireTV	OS	version	5	and
above.

Contents	of	the	SDK	bundle

The	smartclip	SDK	for	Android	is	shipped	in	a	single	zip	archive	with	the	following	contents:

SDK	as	aar	file	(Smartclip-smartclientandroid)
apiDocs	for	the	SDK
Reference	implementation
This	documentation

How	to	work	with	the	reference	implementation

It	is	recommend	to	start	with	the	reference	implementation,	which	implements	all	neccessary
interfaces	to	start	a	simple	project	for	both	intream	and	out-stream	cases.

For	an	implementation	of	an	out-stream	use	case	only	SxAdView	and	the	desired	SxAdSlot	are
needed.
If	the	classes	are	implemented	directly	for	an	instream	use	case,	it	is	neccessary	to	implement	the

interface	SxInstreamVideoPlayerWrapper	to	connect	individual	playback	solution	to	the	AdSlots.
SxSequencer	class	will	than	control	the	whole	content	and	ad	playback	and	is	recommended	for	all
standard	setups.

Adding	the	smartclip	SDK	to	a	project

To	add	this	SDK	to	a	project	extract	the	zip	archive's	contents,	create	a	new	module	in	Android
Studio	and	import	the	aar	file	(File	→	New	→	New	Module	→	Import	.JAR/.AAR	Package).
Next	select	the	aar	file	from	the	extracted	archive	and	set	a	proper	"Subproject	name"	to	be	used
for	the	smartclip	SDK	(for	example	SxMobileSDK).

The	smartclip	SDK	is	shipped	as	an	aar	library	file.	It	is	developed	in	Kotlin	using	Kotlin	Coroutines,
ExoPlayer	and	Moshi	libraries.
These	dependencies	should	be	part	of	the	app's	classpath	(see	next	page).

Within	the	app's	build.gradle	dependency	section	add	the	smartclip	SDK	dependency	(replace
SxMobileSDK	with	the	module	name	defined	when	importing	the	aar	file).

dependencies	{
				...
				implementation	project(":SxMobileSDK")
				...
	}

Also	add	dependencies	for	the	used	libraries:

dependencies	{
				...
				implementation	"org.jetbrains.kotlin:kotlin-stdlib-jdk8:1.3.72"
				implementation	"org.jetbrains.kotlinx:kotlinx-coroutines-android:1.4.2"

				implementation	"com.squareup.moshi:moshi-kotlin:1.11.0"

				implementation	"com.google.android.exoplayer:exoplayer-core:2.12.2"
				implementation	"com.google.android.exoplayer:exoplayer-ui:2.12.2"

				implementation	"io.insert-koin:koin-core:3.1.0"
				implementation	"io.insert-koin:koin-android:3.1.0"
				...
	}

When	targetting	SDK	23	or	lower	you	should	also	add

				compileOptions	{
								sourceCompatibility	1.8
								targetCompatibility	1.8
				}

to	the	android	configuration	block

After	that,	synchronize	the	gradle	project.	smartclip	SDK	is	ready	for	use.

Activate	logs	and	debug	options

For	first	steps	with	the	SDK	activate	debug	logging.	To	get	detailed	information	set	debug	level	in
the	static	variable	Log.LogLevel	to	VERBOSE.	By	default	the	log	level	is	set	to	WARN.

The	LogLevel	can	be	adjusted	at	any	time.	To	change	it	for	the	whole	application	lifetime	it	is
recommended	to	set	it	in	Application,	Activity	or	any	static	context.

import	tv.smartclip.smartclientandroid.lib.utils

class	MyApplication	:	Application()	{

				override	fun	onCreate()	{
								super.onCreate()

								Log.logLevel	=	Log.LogLevel.WARN

							
				}
}

Implementing	a	basic	instream	ad	break	with	sequencing

For	the	instream	use	case	start	with	the	InstreamActivity	(InstreamExoWrapperActivity	or
AbsVideoPlayerWrapperActivity)	from	the	ReferenceApp	package	to	familiarize	with	the
general	setup	of	playbacks.
SxSequencer	is	used,	which	encapsulates	most	low-level	events	and	in	turn	uses
SxInstreamVideoPlayerWrapper	to	control	video	playback.
The	example	uses	ExoPlayer	for	displaying	content	video	and	ads.
Part	of	the	version	2	is	a	component	called	SxAdOverlayContainer,	which	manages	states	like
skippable	ads	and	progress	as	well	as	buttons	to	control	sound	and	cancel.
If	reusing	the	component	or	adding	your	own	overlays	you	should	be	aware	of	the	fact	that	the
child	views	that	have	been	added	by	the	SDK	will	be	reset	with	any	re-run	or	re-use	of	the
component.

To	start	building	the	setup	for	an	instream	use	case,	define	ad	tags	and	their	positions	within	the
content	video	with	the	SxSequencerAdSlots.	A	general	skip	offset	can	be	configured,	if	needed.

fun	createAdSlot(position:	Double)	=
												SxSequencerAdSlot(adTAg	=	<Smartclip-AdTag>,
																														position	=	SxSequencerRelativePosition(position),
																														opener	=	<Opener-URL>,
																														forceOpener	=	<true|false>,		
																														closer	=	<Closer-URL>,
																														forceCloser	=	<true|false>,		
																														bumper	=	<Bumper-URL>,
																														forceBumper	=	<true|false>,		
																														skipAdDuration	=	5
)

val	adSlots	=	List<SxSequencerAdSlot>	=	listOf(
																createAdSlot(0.0),
																createAdSlot(0.33),
																createAdSlot(0.66),
																createAdSlot(1.0))

Position	definition	must	be	an	instance	of	SxSequencerPosition.	For	example:

SxSequencerAbsolutePosition	-	defines	an	absolute	position	(in	milliseconds)	within	the
content	video.
SxSequencerRelativePosition	-	defines	a	relative	position	within	the	content	video
(0=start;	1=end).

Furthermore	a	SxInstreamVideoPlayerWrapper	implementation	is	required.	It	will	observe	and
control	an	existing	video	playback.
We	offer	two	ways	to	implement	the	SxInstreamVideoPlayerWrapper:

using	the	InstreamExoWrapper:

Ready	to	use	wrapper	based	on	the	ExoPlayer
Allows	changing	of	certain	features	like	loading	of	the	video	files	or	react	when	user
seeks	through	the	content	video.	Also	provides	possibility	to	use	a	custom
ExoPlayer	instance	if	needed.

implementing	the	AbsVideoPlayerWrapper:

Abstract	class	to	be	used	with	any	other	video	player	than	ExoPlayer.
Implementation	needs	to	sync	observer	properties	of	the	wrapper	with	the	video
player	in	and	output	events.

Keep	in	mind,	that	the	onCreate	and	onCreateView	methods	can	get	called	again	on	the	same
instance	after	onDestroy	or	onDestoryView	was	called.	Because	of	that,	you	need	to	create	new
instances	of	the	SxInstreamVideoPlayerWrapper	and	the	SxSequencer	every	time,	onCreate	or
onCreateView	gets	called.

InstreamExoWrapper

lateinit	var	playerWrapper:	SxInstreamVideoPlayerWrapper

override	fun	onCreate(savedInstanceState:	Bundle?)	{
				...

				val	video:	PlayerView	=	findViewById<PlayerView>(R.id.playerView)
				val	contentVideo	=	"https://url.to.some.content.video"
				playerWrapper	=	InstreamExoWrapper(video,	contentVideo)
}

AbsVideoPlayerWrapper

A	basic	implementation	of	the	AbsVideoPlayerWrapper	is	included	in	the	reference	app,	which	can
adjust	to	the	player	used	in	your	project.

Setup	the	sequencer

After	implementing	the	SxInstreamVideoPlayerWrapper	interface	and	definition	of	desired	ad
slots	with	the	SxSequencerAdSlot	classes,	create	a	SxSequencer	instance:

lateinit	var	sequencer:	SxSequencer

override	fun	onCreate(savedInstanceState:	Bundle?)	{
				...

				sequencer	=	SxSequencer(playerWrapper,	adSlots)
				playerWrapper.playWhenReady	=	true
}

Lifecycle

Setting	playWhenReady	of	the	SxInstreamVideoPlayerWrapper	to	true,	SxSequencer	will	start
playback	as	soon	as	possible.	This	property	should	also	be	used	to	pause	and	resume	playback	of
content	or	advertisement	videos	at	any	time.	For	example	when	underlying	Activity	or	Fragment
is	paused	or	resumed,	this	needs	to	be	forwarded	to	SxInstreamVideoPlayerWrapper:

override	fun	onResume()	{
				super.onResume()
				playerWrapper.playWhenReady	=	true
}

override	fun	onPause()	{
				playerWrapper.playWhenReady	=	false
				super.onPause()
}

Finally	it	is	very	important	to	release	the	SxSequencer	every	time	the	Activity	or	Fragment	is
destroyed.

override	fun	onDestroy()	{
				sequencer.release()
				super.onDestroy()
}

Configuration

All	available	parameters	except	the	ad	tags	and	their	playback	position	can	be	configured	in	the
SxConfiguration	class.
By	default	the	SxSequencer	uses	SxConfiguration.INSTREAM	as	configuration.
To	provide	your	own	configuration,	just	create	a	copy	of	the	default	configuration,	set	the	desired
parameters	and	initialize	the	SxSequencer	with	that	configuration.	For	example	when	you	want	a
specific	bitrate	and	no	automatic	audio	focus	handling:

val	configuration	=	SxConfiguration.INSTREAM.copy(
				desiredBitrate	=	1200,
				handleAudioFocus	=	false
)
sequencer	=	SxSequencer(playerWrapper,	adSlots,	configuration)

A	more	detailed	configuration	would	need	additional	parameters	depending	on	the	desired	setup.
See	KDoc	of	SxConfiguration	for	more	details.

Click-Through

We	support	three	different	Click-Through	setups:

Direct:	The	landing	page	is	opened	directly	when	a	user	taps	an	ad.

clickType	=	CLICKABLE_ON_FULL_AREA

Dialog	(default):	A	user	needs	to	confirm	a	dialog	before	the	landing	page	is	opened.

clickType	=	CLICKABLE_WITH_CONFIRMATION_DIALOG
clickThroughListener	=	null
optional:

clickThroughDialogTitle
clickThroughDialogMessage
clickThroughDialogPositiveAnswer
clickThroughDialogNegativeAnswer

Custom:	When	a	user	taps	an	ad,	your	registered	click-through	listener	is	called	and	the	ad
is	paused.	Using	the	provided	parameter	of	the	listener	will	open	the	landing	page	or
continue	playback.

clickType	=	CLICKABLE_WITH_CONFIRMATION_DIALOG
clickThroughListener	set

The	implementation	of	the	Direct	or	Dialog	setups	is	straight	forward.	Please	see	KDoc	of
SxConfiguration	fore	more	details.	Because	the	implementation	for	the	Custom	setup	is	a	little
bit	more	complex,	it	is	shown	below.

For	the	Custom	setup	you	only	need	to	set	the	clickType	parameter	to
CLICKABLE_WITH_CONFIRMATION_DIALOG	and	the	clickThroughListener	parameter	to	your
callback.	The	clickThroughListener	parameter	expects	a	lambda	of	the	type
(listener:	(Boolean)	->	Unit)	->	Boolean	and	is	used	in	the	following	way:

the	lambda	is	invoked	when	a	user	taps	the	ad
you	need	to	return	a	Boolean	in	this	lambda	to	signal	how	the	click-through	should	be

handled:

false	to	let	the	SDK	handle	the	click-through.	It	will	ask	the	user	using	a	dialog,	if
he	wants	to	open	the	landing	page	or	not.	The	playback	is	automatically	resumed,
after	the	user	returns	from	the	browser	or	dialog.	This	is	technically	the	same	as
setting	the	clickThroughListener	to	null	(see	Dialog	setup).
true	if	you	want	to	show	your	own	dialog	or	do	what	ever	you	want.	The	SDK	will
also	pause	the	playback,	but	you	are	responsible	to	signal	the	users	decision	to	the
SDK.	To	do	so	call	the	provided	parameter	listener	of	your
clickThroughListener	lambda.	listener	is	also	a	lambda	that	expects	one
Boolean	parameter:

true	if	the	user	accepts	the	click-through.	This	will	open	the	landing	page
with	the	default	browser	and	resumes	the	ad	playback	when	the	user
returns	to	the	ad	in	some	way.
false	if	the	user	regrets	the	click-through.	This	will	just	resume	the
playback	of	the	ad.

val	config	=	SxConfiguration.INSTREAM.copy(clickThroughListener	=	{	listener	->
				AlertDialog.Builder(context)
												.setMessage("Do	you	want	to	open	the	landing	page?")
												//	Call	`listener`	with	the	proper	parameter	to	signal	the	users	
decision.
												.setPositiveButton("Yes")	{	_,	_	->	listener(true)	}
												.setNegativeButton("No")	{	_,	_	->	listener(false)	}
												.setOnDismissListener	{	listener(false)	}
												.show()
				true	//	You	want	to	handle	the	click-through.
})

The	example	above	shows	a	minimal	implementation	of	the	Custom	click-through	setup.	Keep	in
mind	to	call	listener	for	all	possible	ways	the	user	can	go	from	here	(positive,	negative,	dismiss).

Unfortunately	we	can	not	provide	more	information,	like	the	URL	of	the	landing	page,	at	this	point.

Seeking

The	shown	example	configures	four	scheduled	ad	breaks,	one	pre-roll,	two	mid-rolls	and	a	post-roll
(as	showcased	in	the	ReferenceApp).

private	lateinit	var	latestCreatedAdSLots:	List<SxSequencerAdSlot>

protected	open	fun	createAdSlots():	List<SxSequencerAdSlot>	{
								latestCreatedAdSLots	=	listOf(
																createAdSlot(0.0),
																createAdSlot(0.33),
																createAdSlot(0.66),
																createAdSlot(1.0)
)
								return	latestCreatedAdSLots
				}

Overwrite	the	method	onContentVideoSought	of	SxInstreamVideoPlayerWrapper	interface	to
enhance	the	implementation,	which	is	called	directly	after	the	video	was	sought.
In	the	following	example	the	created	SxSequencerAdSlots	are	stored	in	the
latestCreatedAdSlots	property	directly	after	they	were	created.

In	the	onContentVideoSought	callback	they	now	can	be	used	to	restore	ad	slots	that	were
removed	before.	The	following	example	shows	how	to	restore	a	removed	ad	slots,	after	a	user
seeks	back	before	the	original	trigger	position	of	this	ad	slot.

override	suspend	fun	onContentVideoSought(
				remainingAdSlots:	List<SxSequencerAdSlot>,
				removedAdSlots:	List<SxSequencerAdSlot>)	:	List<SxSequencerAdSlot>	{

				val	adSlotsToReturn	=	remainingAdSlots.toMutableList()
				val	relativePosition	=	(exoPlayer?.currentPosition	?:	0)	/
																												(exoPlayer?.duration	?:	-1).toDouble()

/**	Read	ad	slots,	if	they	were	removed	before.	This	is	the	case	when	user	
seeks	forward,	which	will	remove	skipped	ad	slots,	and	seek	the	video	backward	
after	that,	which	will	insert	the	removed	ad	slots	again.
The	following	will	restore	any	removed	ad	slot	for	this	use	case:
1.	User	starts	a	content	video	with	ad	slots	at	the	relative	positions	0.0,	0.5	
and	1.0.
2.	After	the	pre-roll	finished	user	seeks	video	to	2/3	of	the	complete	content	
video	duration.
3.	Because	the	ad	slot	with	the	relative	position	of	0.5	was	jumped	over,	the	
slot	is	removed	from	the	list	of	remaining	ad	slots.
4.	Now	the	user	seeks	the	content	video	back	to	1/3	of	its	duration.
5.	Because	the	ad	slot	with	position	0.5	is	now	in	front	of	the	current	content	
video	position,	the	ad	slot	is	restored	to	the	list	of	remaining	ad	slots.

(The	following	code	only	shows	step	5.	The	other	steps	are	automatically	
processed	by	the	SxSequencer.)	**/
				latestCreatedAdSLots.asReversed().forEach	{	adSlot	->
								if	(relativePosition	<	adSlot.position.value	as	Double
																&&	remainingAdSlots.none	{
																				(it.position	as	SxSequencerRelativePosition).value
																								==	adSlot.position.value	as	Double
																})	{
												adSlotsToReturn.add(adSlot)
								}
				}
				return	adSlotsToReturn
}

Instead	of	restoring	removed	ad	slots	it	is	also	possible	to	add	a	completly	new
SxSequencerAdSlot.	The	only	requirement	is,	that	the	new	ad	slot's	trigger	position	is	in	front	of
the	current	content	video	position.

By	default	the	onContentVideoSought	callback	will	just	return	the	remainingAdSlots.	Any	other
behaviour	like	the	described	above	needs	to	be	implemented	manually.

For	more	detailed	information	on	the	active	ad	slots	the	SxSequencer	implements	the
SxEventProvider	interface,	which	can	be	used	to	subscribe	to	changes	of	the	events	SxAdInfo,
SxPublicAd	and	SxPublicAdSlot.

Implementing	a	basic	out-stream	ad

In	out-stream	use	cases	the	smartclip	SDK	takes	care	of	most	processes	around	the	configuration
and	rendering	of	advertisements.

It	is	possible	to	insert	the	ad	placement	directly	in	an	XML	layout	file,	although	all	configuration
options	are	available	for	dynamic	creation	as	well	(see	SxConfiguration	for	more	details).

<tv.smartclip.smartclientandroid.lib.SxAdView
				android:id="@+id/advertisement"
				android:layout_width="match_parent"
				android:layout_height="wrap_content"
				app:adTag="@string/ad_tag_5sec"
				app:title="@string/single_page_ad_title"
				app:titleStyle="@style/SinglePage.Title"
				app:showMuteToggleButton="true"
				app:muteIconStyle="@style/SinglePage.MuteIcon.Mute"
				app:unmuteIconStyle="@style/SinglePage.MuteIcon.Unmute"
				app:allowAdSkipping="true"
				app:skipButtonText="@string/single_page_skip_button"
				app:skipButtonStyle="@style/SinglePage.SkipButton"
				app:initialMuted="true"
				app:onEndAction="repeatButton"
				app:showProgressBar="true"
				app:progressBarStyle="@style/SinglePage.ProgressBar"
				app:clickThroughDialogMessage="@string/single_page_click_through_message"
				app:clickThroughDialogTitle="@string/single_page_click_through_title"	/>

The	corresponding	activity	or	fragment	just	needs	to	inflate	the	created	XML.	It	is	also	necessary	to
connect	the	advertisement	with	the	Android	lifecycle	with	onResume	and	onPause	and	to	call	the
corresponding	shutdown	method	release	on	the	AdView,	once	the	activity	or	fragment	is	stopped
or	the	view	is	not	needed	any	more.

import	kotlinx.android.synthetic.main.fragment_single_page.*

class	SinglePage	:	Fragment()	{

				override	fun	onCreateView(inflater:	LayoutInflater,	container:	ViewGroup?,	
savedInstanceState:	Bundle?)	=
												inflater.inflate(R.layout.fragment_single_page,	container,	false)!!

				override	fun	onResume()	{
								super.onResume()
								advertisement.onResume()
				}

				override	fun	onPause()	{
								advertisement.onPause()
								super.onPause()
				}

				override	fun	onDestroyView()	{
								advertisement.release()
								super.onDestroyView()
				}
}

For	the	different	parameters	and	functions	please	check	KDoc	or	the	section	for	configuring	out-
stream	placements	in	this	document.

To	subscribe	to	the	stream	of	events	during	an	ad	session	use	the	var
SxAdView.addInfoListener,	which	expects	a	lambda	in	the	form	of

(suspend	(SxAdInfo)	->	Unit)?

Configuring	with	SxConfiguration

Using	SxConfiguration	there	are	multiple	options	to	create	a	sequencer	or	a	single	ad	slot.	Note
that	the	configuration	object	controls	all	settings,	macros	and	additional	native	tracking	information
for	both	instream	and	out-stream	scenarios.	That	also	means	not	all	options	may	apply	to	a	specific
scenario	(e.g.	values	in	SxPlacement	or	the	out-stream	formatting	options).

When	in	doubt	use	the	default	configurations	by	not	providing	a	different	one.	They	are	listed	in	the
constants	of	SxConfiguration.INSTREAM	and	SxConfiguration.OUTSTREAM	and	must	be
applied	like	this:

val	config	=	SxConfiguration.INSTREAM.copy(
				showMuteToggleButton	=	false
)

//	for	Instream
val	sequencer	=	SxSequencer(this,	controlOverlay,	adSlots,	config)

//	or	for	Outstream
val	adView	=	object	:	SxAdView(context,	null,	0)	{
				override	val	configuration	=	config
}

The	following	sections	will	outline	some	common	use	cases.	Please	refer	to	KDoc	on
SxConfiguration	for	an	overview	of	all	parameters.

Setting	a	desired	bitrate	and	desired	mime-types

The	SDK	will	try	to	select	a	media	file	of	the	desired	bitrate	from	the	available	media	files	in	the
server's	ad	response.	If	the	exact	value	is	not	present	in	the	ad	response,	the	SDK	is	going	to
search	for	a	lower	bitrate	media	file	and	only	if	none	is	available,	the	SDK	will	select	a	media	file	of
higher	bitrate.

In	order	to	restrict	the	selection	to	certain	mime-types,	those	should	be	set	as	environment
variable	by	handing	the	list	of	desired	mime-types	to	SxMacros	as	an	array.

SxConfiguration.INSTREAM.copy(
				desiredBitrate	=	1200
				desiredMimetypes	=	listOf("video/mp4",	"video/webm")
)

Passing	informaton

Additional	information	is	also	considered	part	of	the	configuration	and	has	to	be	definied	at
initialization	of	the	SxSequencer	or	SxAdView.	There	is	a	number	of	information,	according	to	the
VAST	standard,	that	should	be	available	for	reporting	or	ad	requests.

SxConfiguration.INSTREAM.copy(
				initialMuted	=	false,
				placementType	=	SxPlacementType.Companion.UNDEFINED,
				breakPosition	=	SxBreakPosition.PRE_ROLL,
				contentId	=	"Some	identifier"
)

The	full	list	of	supported	information	is	compiled	in	the	following	table	for	all	supported	macros	and
configuration	values	(if	default	is	empty	the	native	SDK	does	not	set	a	value	here).	The	definition
of	expected	values	is	in	line	with	standard	VAST	4.1,	section	6.

Value Effect Default
adCategories Content	categories
appName Freely	specified	app	name

appBundle VAST	4.1	standard-identifier

package
name
from

Context
apiFrameworks Player's	feature	support 7
blockedCategories Blocked	content	categories

breakPosition Position	of	the	ad	break	in	relation	to	content

0
Instream
(4	for
out-
stream)

contentId Customer-specific	content	identifier
contentUri Customer-specific	content	resource	identifier
deviceIp Device	IP	address
domain Domain	information

extension Defines	the	position	of	an	advertisment	break	inside	an	instream
configuration. OTHER

ifa Advertising	Identifier
ifaType rida-Roku	ID,	aaid-Android	ID,	idfa-Apple	ID

inventoryState

List	of	options	indicating	attributes	of	the	inventory.	Possible	values:
skippable	to	indicate	ads	can	be	skipped,	autoplayed	to	indicate
ads	are	autoplayed	with	audio	unmuted	mautoplayed	to	indicate	ads
are	autoplayed	with	audio	muted	optin	to	indicate	the	user	takes	an
explicit	action	to	knowingly	start	playback	of	ads

latLong user	position	as	lat	long	floats
limitAdTracking Did	the	user	restrict	the	use	of	advertising? 0
mediaPlayhead Current	playhead	of	content	stream
placementType One	of	the	SxPlacementTypes
playerCapabilities List	of	player	capabilities	as	string	list
regulations Privacy	regulations	that	apply
verificationVendors List	of	verification	vendors

Define	skip	options	for	your	app

The	SDK	supports	options	to	skip	ads.	Sometimes	this	information	is	part	of	the	VAST	document
returned	from	the	ad	server.
A	general	skip	option	for	all	ads	(which	do	not	bring	their	own)	can	be	set	via	skipAdDuration	in
the	creation	of	the	SxAdSlot	(Outstream)	or	SxSequencerAdSlot(Instream).
Tha	value	of	skipAdDuration	denotes	the	time	period	in	seconds	that	will	pass	before	the	skip
button	appears.

Any	skip	offset	defined	by	the	ad	server	will	overwrite	the	general	skip	offset	defined
programmatically	in	this	setting.

It	is	possible	to	change	the	appearance	of	the	button	and	the	text	by	using	the	corresponding
resource	settings	skipButtonText	and	skipButtonStyle.

Using	separation	clips

It	is	possible,	but	not	required,	to	specify	separation	clips	which	are	played	back	at	fixed	places
within	an	ad	slot.	The	definition	of	these	separation	clips	and	handling	of	the	video	files	is	done	in
the	source	code	of	the	Android	app.

Note	that	handling	of	these	configurations	requires	to	first	define	a	SxAdSlotDelegate	and	set	the
configuration	in	SxAdSlotController	or	use	the	simpler	interface	of	SxSequencerAdSlot	object
first	and	then	add	Opener,	Closer	or	Bumper	to	their	initialisation.

val	slot	=	SxAdSlot(getString(R.string.ad_tag_5sec),
																				SxSequencerRelativePosition(0.0),
																				getString(R.string.default_opener_url),
																				getString(R.string.default_closer_url),
																				getString(R.string.default_bumper_url))

For	the	out-stream	use	case,	define	the	separation	clips	via	loadAd	method	of	SxAdView.

Configuring	out-stream	placements

To	configure	out-stream	placements	there	is	a	number	of	options	available	in	the
SxConfiguration	object.	There	is	also	a	preset	for	out-stream,	which	is	available	as	a	static	object.

Value Effect Default

onEndBehaviour
Define	what	happens	after	the	last	ad	has	been	played,
NOTHING	(last	frame	stays),	REPEAT	(a	repeat	button	is
offered),	COLLAPSE	(Remove	view	into	invisibility)

REPEAT

onEndBehaviorAfterSkipSimilar	to	above,	but	for	users	who	skipped	the	last	ad REPEAT
initialMuted Defines	the	playback	configuration true
skipButtonText Button	text,	in	case	skip	ad	is	offered skip
skipButtonStyle StyleResource
repeatButtonStyle StyleResource
unmuteIconStyle StyleResource
muteIconStyle StyleResource
showPlaybackProgress Whether	a	progress	bar	should	be	displayed
progressBarStyle StyleResource
title A	title	to	display	the	advertising Advertisment
titleStyle StyleResource

Events

The	events	can	be	classified	as	informative	events	or	as	behavioural	events	that	need	to	be
considered	in	regard	to	functioning	of	the	application	and	general	user	experience.

Behavioural	events

These	events	may	require	attention	when	it	comes	to	displaying	or	stopping	a	content	video.	They
are	expected	in	the	order	of	the	following	list:

ON_AD_MANIFEST_LOADED	(ad	server	response	has	been	parsed,	information	on	the
upcoming	slot	is	complete)
ON_AD_SLOT_STARTED	(ad	slot	has	started	playing)
ON_AD_STARTED	(an	ad	started	to	play)
ON_AD_FINISHED	(an	ad	finished	playback)
ON_AD_SLOT_FINISHED	(the	last	item	has	been	played	back)
ON_AD_SLOT_COMPLETE	(ad	slot	has	reached	its	end)

Informative	events

These	events	mainly	cover	standard	VAST	events	or	information	on	states	that	have	been	changed
by	either	player	or	user.

ON_AD_SCHEDULED
ON_AD_PLAYBACK_START
ON_AD_PLAYING
ON_AD_FIRST_QUARTILE
ON_AD_SECOND_QUARTILE
ON_AD_MID_POINT
ON_AD_THIRD_QUARTILE
ON_AD_IMPRESSION
ON_AD_PLAYBACK_FINISHED
ON_AD`LINEARITY`CHANGED
ON_AD_PAUSED
ON_AD_SKIPPED

Error	events

Fired	in	case	of	errors

ON_AD_ERROR

Whenever	the	SDK	encounters	a	problem	during	loading,	rendering	there	will	be	a	feedback	to	the
publisher,	based	on	the	ON_AD_ERROR	event.
Tracking	as	defined	in	the	VAST	document	will	be	fired.

Since	the	instream	scenario	relies	on	the	publishers'	implementation,	it	is	important	to	implement
the	interface	method	reportPlayerError.
This	will	notify	the	SDK	of	any	playback	issues	that	happen	in	the	scope	of	the	player.	Of	course
that	results	in	an	ON_AD_ERROR	event	that	will	be	reported	back	to	the	publisher.

An	event	of	this	kind	does	not	signal	the	end	of	an	ad	slot	or	ad	replay.	It	might	trigger	other
behaviour,	such	as	fallback	to	buffet	ads	or	new	playback	commands.

