smartclientandroid 2.3.1-dev-2

%/// smartclip

smartclip's native SDK for Android apps

Version history

Contents

e |ntroduction
e Features

AdView-Settings and configuration
Providing neccessary information
Configuring the environment

Event Callback

Retrieving ad and display information
Separation clips

Sequencing

0o 0 o o o o o

e Implementation guide

Introduction

The smartclip SDK for Android is a native SDK to display instream and out-stream advertising in
native Android and FireTV apps. It allows to display various types of video advertisement formats.

Features

Control and display of ads

In the regular instream settings a video player is attached to the SDK to display advertisement. It
requires the implementation of an interface, which will serve as connection to the ad server.

It is possible to use one or more ad tags for one ad slot and to configure different types of
additional separation clips. In addition a number of additional parameters can be set for the specific
environment to pass information to the ad server and to control requested resources.

In an out-stream scenario, based on a standalone video player embedded in regular content, the
SDK displays ads and offers a number of settings to control appearance and behaviour of the app.

If the product already provides streams, advertising is embedded in the existing player, providing
detailed interfaces for a seamless integration of content and ads. In this scenario the complete
playback stack itself remains under the control of the publisher.

Providing neccessary information
The interface for the smartclip SDK allows controlling environment and tracking information.

Overwriting Bundle-ID (for debugging and testing purposes)
Supplying reporting/tracking information

Supplying unique advertising id

Adding metadata on content context

For a full list of possible information settings please refer to the KDoc of the project.
Setting the advertising ID as provided by Google

In case the advertising ID is used inside the app, it should be passed into to the SDK.

Since the field is not validating it is also possible to generate another identifier within the app, which
can be used as means of identification and tracking.

The SDK relies on that information and does not try to get a value from the system. This is
because using advertising ID requires special attention to the permissions during the app
submission process to the Play Store.

Configuring the environment

e Desired bitrate setting
e Desired mime-types
e Set information on network/connection stability

Desired bitrate setting

It is possible to override the default bitrate settings for ad replay by setting a desired bitrate. If the
exact value is not present in the ad response, the SDK is going to search for a lower bitrate media
file and only if none is available, the SDK will select a media file of higher bitrate. The bitrates should
consider the display capabilities of the device and current network settings.

The actually displayed media file can only be selected, if the campaign provides one for the
correspoding bitrate.

Configure media file selection based on mime-type

Since the support for different formats varies on certain platforms it is advised to include a list of
preferred mime-types, which supports the selection process after parsing of an ad server
response. One example is the support of VebP formats on certain devices such as the FireTV stick.

Event Callback

During an ad slot or ad session the SDK will inform about a number of state information which can
be accessed by registering a listener/delegate to handle callbacks. This will allow the app to interact
properly with the advertising content and integrate with the app's control flow.

If there is a registered listener for the SxEventProvider it will receive all status transitions that
SxAdInfo, SxPublicAdor SxPublicAdSlot goes through. Its main purpose is to aid reacting to
media playback states and possible errors.

Retrieving ad and display information

Utilizing SxEventProvider the application will get information about the current state of the ad
player. It starts with the signal of ONADTAG PARSED, the interpretation of the ad server response,
and will iterate through the individual ads that are part of the slot. Callbacks follow the standard
VAST events, signalling quartiles and additional information on the type of the ads. Please refer to
the KDoc parts to get information on all properties/methods available for the SxAdInfo,
SxPublicAdand SxPublicAdSlot.

Separation clips

There are some advanced options available to cover more complex ad break scenarios with
multiple ads in one single ad slot. Separation clips can be inserted to signify the beginning or end of
an ad break, as well as to separate sponsoring ads from regular advertisement.

Sequencing (instream)

The sequencing component allows to create a schedule for a complete content session. It will
automatically create and start ad slots, as well as notify the code if any seek or fast-forward/-
backward actions are detected. In that case the SDK returns respective ad slots and allows to reset
the mapping. It can be used for various scenarios - even a quite simple preroll- configuration, as it
will take care required monitoring and reporting tasks.

Implementation guide

Android

The SDK supports Android platform API level 19 and above, as well as FireTV OS version 5 and
above.

Contents of the SDK bundle

The smartclip SDK for Android is shipped in a single zjp archive with the following contents:

SDK as aarfile (Smartclip-smartclientandroid)
apiDocs for the SDK

Reference implementation

This documentation

How to work with the reference implementation

It is recommend to start with the reference implementation, which implements all neccessary
interfaces to start a simple project for both intream and out-stream cases.

For an implementation of an out-stream use case only SxAdView and the desired SxAdSlot are
needed.
If the classes are implemented directly for an instream use case, it is neccessary to implement the

interface SxInstreamVideoPlayerWrapper to connect individual playback solution to the AdSlots.
SxSequencer class will than control the whole content and ad playback and is recommended for all
standard setups.

Adding the smartclip SDK to a project

To add this SDK to a project extract the zjp archive's contents, create a new module in Android
Studio and import the aarfile (File - New -» New Module - Import .JAR/.AAR Package).

Next select the aarfile from the extracted archive and set a proper "Subproject name" to be used
for the smartclip SDK (for example SxMobileSDK).

The smartclip SDK is shipped as an aar library file. It is developed in Kotlin using Kotlin Coroutines,
ExoPlayer and Moshi libraries.
These dependencies should be part of the app's classpath (see next page).

Within the app's build.gradle dependency section add the smartclip SDK dependency (replace
SxMobileSDK with the module name defined when importing the aar file).

dependencies {
implementation project(":SxMobileSDK")

}

Also add dependencies for the used libraries:

dependencies {

implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk8:1.3.72"
implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:1.4.2"

implementation "com.squareup.moshi:moshi-kotlin:1.11.0"

implementation "com.google.android.exoplayer:exoplayer-core:2.12.2"
implementation "com.google.android.exoplayer:exoplayer-ui:2.12.2"

implementation "io.insert-koin:koin-core:3.1.0"
implementation "io.insert-koin:koin-android:3.1.0"

}

When targetting SDK 23 or lower you should also add

compileOptions {
sourceCompatibility 1.8
targetCompatibility 1.8

}

to the android configuration block

After that, synchronize the gradle project. smartclip SDK is ready for use.

Activate logs and debug options

For first steps with the SDK activate debug logging. T get detailed information set debug level in
the static variable Log. LogLevel to VERBOSE. By default the log level is set to WARN.

The LogLevel can be adjusted at any time. To change it for the whole application lifetime it is
recommended to set it in Application, Activity or any static context.

import tv.smartclip.smartclientandroid.lib.utils
class MyApplication : Application() {

override fun onCreate() {
super.onCreate()

Log.logLevel = Log.LogLevel.WARN

Implementing a basic instream ad break with sequencing

For the instream use case start with the InstreamActivity (InstreamExoWrapperActivity or
AbsVideoPlayerWrapperActivity) from the ReferenceApp package to familiarize with the
general setup of playbacks.

SxSequenceris used, which encapsulates most low-level events and in turn uses
SxInstreamVideoPlayerWrapper to control video playback.

The example uses ExoPlayer for displaying content video and ads.

Part of the version 2 is a component called SxAdOverlayContainer, which manages states like
skippable ads and progress as well as buttons to control sound and cancel.

If reusing the component or adding your own overlays you should be aware of the fact that the
child views that have been added by the SDK will be reset with any re-run or re-use of the
component.

To start building the setup for an instream use case, define ad tags and their positions within the
content video with the SxSequencerAdSlots. A general skip offset can be configured, if needed.

fun createAdSlot(position: Double) =

SxSequencerAdSlot(adTAg = <Smartclip-AdTag>,
position = SxSequencerRelativePosition(position),
opener = <0pener-URL>,
forceOpener = <true|false>,
closer = <Closer-URL>,
forceCloser = <true|false>,
bumper = <Bumper-URL>,
forceBumper = <true|false>,
skipAdDuration = 5

val adSlots = List<SxSequencerAdSlot> = 1istOf(
createAdSlot(0.0),
createAdSlot(0.33),
createAdSlot(0.66),
createAdSlot(1.0))

Position definition must be an instance of SxSequencerPosition. For example:

e SxSequencerAbsolutePosition - defines an absolute position (in milliseconds) within the
content video.

e SxSequencerRelativePosition - defines a relative position within the content video
(O=start; 1=end).

Furthermore a SxInstreamVideoPlayeriWrapper implementation is required. It will observe and
control an existing video playback.
We offer two ways to implement the SxInstreamVideoPlayerWrapper:

e using the InstreamExoWrapper:

Ready to use wrapper based on the ExoPlayer

Allows changing of certain features like loading of the video files or react when user
seeks through the content video. Also provides possibility to use a custom
ExoPlayer instance if needed.

e implementing the AbsVideoPlayerWrapper:

o Abstract class to be used with any other video player than ExoPlayer.
o Implementation needs to sync observer properties of the wrapper with the video
player in and output events.

Keep in mind, that the onCreate and onCreateView methods can get called again on the same
instance after onDestroy or onDestoryViewwas called. Because of that, you need to create new
instances of the SxInstreamVideoPlayerWrapper and the SxSequencer every time, onCreate or
onCreateView gets called.

InstreamExoWrapper

lateinit var playerWrapper: SxInstreamVideoPlayerWrapper
override fun onCreate(savedInstanceState: Bundle?) {
val video: PlayerView = findViewById<PlayerView>(R.id.playerView)

val contentVideo = "https://url.to.some.content.video"
playerWrapper = InstreamExoWrapper(video, contentVideo)

AbsVideoPlayerWrapper

A basic implementation of the AbsVideoPlayerWrapper is included in the reference app, which can
adjust to the player used in your project.

Setup the sequencer

After implementing the SxInstreamVideoPlayerWrapper interface and definition of desired ad
slots with the SxSequencerAdSlot classes, create a SxSequencer instance:

lateinit var sequencer: SxSequencer

override fun onCreate(savedInstanceState: Bundle?) {

sequencer = SxSequencer(playerWrapper, adSlots)
playerWrapper.playWhenReady = true

Lifecycle

Setting playWhenReady of the SxInstreamVideoPlayerWrapperto true, SxSequencer will start
playback as soon as possible. This property should also be used to pause and resume playback of
content or advertisement videos at any time. For example when underlying Activity or Fragment
is paused or resumed, this needs to be forwarded to SxInstreamVideoPlayerWrapper:

override fun onResume() {
super.onResume()

playerWrapper.playWhenReady = true
}
override fun onPause() {
playerWrapper.playWhenReady = false

super.onPause()

}

Finally it is very important to release the SxSequencer every time the Activity or Fragmentis
destroyed.

override fun onDestroy() {
sequencer.release()
super.onDestroy()

Configuration

All available parameters except the ad tags and their playback position can be configured in the
SxConfiguration class.

By default the SxSequencer uses SxConfiguration. INSTREAM as configuration.

To provide your own configuration, just create a copy of the default configuration, set the desired
parameters and initialize the SxSequencer with that configuration. For example when you want a
specific bitrate and no automatic audio focus handling:

val configuration = SxConfiguration.INSTREAM. copy (
desiredBitrate = 1200,
handleAudioFocus = false

)

sequencer = SxSequencer(playerWrapper, adSlots, configuration)

A more detailed configuration would need additional parameters depending on the desired setup.
See KDoc of SxConfiguration for more details.

Click-Through

We support three different Click-Through setups:
e Direct: The landing page is opened directly when a user taps an ad.
o clickType = CLICKABLE ON FULL AREA
e Dialog (default): A user needs to confirm a dialog before the landing page is opened.

o clickType= CLICKABLE WITH CONFIRMATION DIALOG
o clickThroughlListener = null
o optional:

clickThroughDialogTitle
clickThroughDialogMessage
clickThroughDialogPositiveAnswer
clickThroughDialogNegativeAnswer

e Custom: When a user taps an ad, your registered click-through listener is called and the ad
is paused. Using the provided parameter of the listener will open the landing page or
continue playback.

o clickType= CLICKABLE WITH CONFIRMATION DIALOG
o clickThroughListener set

The implementation of the Direct or Dialog setups is straight forward. Please see KDoc of
SxConfigurationfore more details. Because the implementation for the Custom setup is a little
bit more complex, it is shown below.

For the Custom setup you only need to set the clickType parameter to

CLICKABLE WITH CONFIRMATION DIALOG andthe clickThroughlistener parameter to your
callback. The clickThroughListener parameter expects a lambda of the type

(listener: (Boolean) -> Unit) -> Boolean and is used in the following way:

e the lambda is invoked when a user taps the ad
e you need to return a Boolean in this lambda to signal how the click-through should be

handled:

o falseto let the SDK handle the click-through. It will ask the user using a dialog, if
he wants to open the landing page or not. The playback is automatically resumed,
after the user returns from the browser or dialog. This is technically the same as
setting the clickThroughlistenerto null (see Dialog setup).

o trueif you want to show your own dialog or do what ever you want. The SDK will
also pause the playback, but you are responsible to signal the users decision to the
SDK. 7o do so call the provided parameter listener of your
clickThroughListenerlambda. listeneris also a lambda that expects one
Boolean parameter:

m frueif the user accepts the click-through. This will open the landing page
with the default browser and resumes the ad playback when the user
returns to the ad in some way.

m falseif the user regrets the click-through. This will just resume the
playback of the ad.

val config = SxConfiguration.INSTREAM.copy(clickThroughListener = { listener ->
AlertDialog.Builder(context)
.setMessage("Do you want to open the landing page?")
// Call "listener’ with the proper parameter to signal the users

decision.
.setPositiveButton("Yes") { , -> listener(true) }
.setNegativeButton("No") { , -> listener(false) }
.setOnDismissListener { listener(false) }
.show()

true // You want to handle the click-through.

})

The example above shows a minimal implementation of the Custom click-through setup. Keep in
mind to call listenerfor all possible ways the user can go from here (positive, negative, dismiss).

Unfortunately we can not provide more information, like the URL of the landing page, at this point.

Seeking

The shown example configures four scheduled ad breaks, one pre-roll, two mid-rolls and a post-roll
(as showcased in the ReferenceApp).

private lateinit var latestCreatedAdSLots: List<SxSequencerAdSlot>

protected open fun createAdSlots(): List<SxSequencerAdSlot> {

latestCreatedAdSLots = 1istOf(
createAdSlot(0.0),
createAdSlot (0.33),
createAdSlot(0.66),
createAdSlot(1.0)

)
return latestCreatedAdSLots

Overwrite the method onContentVideoSought of SxInstreamVideoPlayerWrapper interface to
enhance the implementation, which is called directly after the video was sought.

In the following example the created SxSequencerAdSlots are stored in the
latestCreatedAdSlots property directly after they were created.

In the onContentVideoSought callback they now can be used to restore ad slots that were
removed before. The following example shows how to restore a removed ad slots, after a user
seeks back before the original trigger position of this ad slot.

override suspend fun onContentVideoSought (
remainingAdSlots: List<SxSequencerAdSlot>,
removedAdSlots: List<SxSequencerAdSlot>) : List<SxSequencerAdSlot> {

val adSlotsToReturn = remainingAdSlots.toMutablelList()
val relativePosition = (exoPlayer?.currentPosition ?: 0) /
(exoPlayer?.duration ?: -1).toDouble()

/** Read ad slots, if they were removed before. This is the case when user
seeks forward, which will remove skipped ad slots, and seek the video backward
after that, which will insert the removed ad slots again.

The following will restore any removed ad slot for this use case:

1. User starts a content video with ad slots at the relative positions 0.0, 0.5
and 1.0.

2. After the pre-roll finished user seeks video to 2/3 of the complete content
video duration.

3. Because the ad slot with the relative position of 0.5 was jumped over, the
slot is removed from the list of remaining ad slots.

4. Now the user seeks the content video back to 1/3 of its duration.

5. Because the ad slot with position 0.5 is now in front of the current content
video position, the ad slot is restored to the list of remaining ad slots.

(The following code only shows step 5. The other steps are automatically
processed by the SxSequencer.) **/
latestCreatedAdSLots.asReversed().forEach { adSlot ->
if (relativePosition < adSlot.position.value as Double
&& remainingAdSlots.none {
(it.position as SxSequencerRelativePosition).value
== adSlot.position.value as Double
P A
adSlotsToReturn.add(adSlot)

}

return adSlotsToReturn

}

Instead of restoring removed ad slots it is also possible to add a completly new
SxSequencerAdSlot. The only requirement is, that the new ad slot's trigger position is in front of
the current content video position.

By default the onContentVideoSought callback will just return the remainingAdSlots. Any other
behaviour like the described above needs to be implemented manually.

For more detailed information on the active ad slots the SxSequencer implements the
SxEventProvider interface, which can be used to subscribe to changes of the events SxAdInfo,
SxPublicAd and SxPublicAdSlot.

Implementing a basic out-stream ad

In out-stream use cases the smartclip SDK takes care of most processes around the configuration
and rendering of advertisements.

It is possible to insert the ad placement directly in an XML layout file, although all configuration
options are available for dynamic creation as well (see SxConfiguration for more details).

<tv.smartclip.smartclientandroid.lib.SxAdView
android:id="@+id/advertisement"
android:layout width="match parent"
android:layout height="wrap content"
app:adTag="@string/ad tag 5sec"
app:title="@string/single page ad title"
app:titleStyle="@style/SinglePage.Title"
app:showMuteToggleButton="true"
app:muteIconStyle="@style/SinglePage.MuteIcon.Mute"
app:unmuteIconStyle="@style/SinglePage.Mutelcon.Unmute"
app:allowAdSkipping="true"
app:skipButtonText="@string/single page skip button"
app:skipButtonStyle="@style/SinglePage.SkipButton"
app:initialMuted="true"
app:onEndAction="repeatButton"
app:showProgressBar="true"
app:progressBarStyle="@style/SinglePage.ProgressBar"
app:clickThroughDialogMessage="@string/single page click through message"
app:clickThroughDialogTitle="@string/single page click through title" />

The corresponding activity or fragment just needs to inflate the created XML. It is also necessary to
connect the advertisement with the Android lifecycle with onResume and onPause and to call the
corresponding shutdown method release on the AdView, once the activity or fragment is stopped
or the view is not needed any more.

import kotlinx.android.synthetic.main.fragment single page.*

class SinglePage : Fragment() {

override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?,

savedInstanceState: Bundle?)
inflater.inflate(R.layout.fragment single page, container, false)!!

override fun onResume() {
super.onResume()
advertisement.onResume()

}

override fun onPause() {
advertisement.onPause()
super.onPause()

}

override fun onDestroyView() {
advertisement.release()
super.onDestroyView()

}

For the different parameters and functions please check KDoc or the section for configuring out-
stream placements in this document.

To subscribe to the stream of events during an ad session use the var
SxAdView.addInfolistener, which expects a lambda in the form of

(suspend (SxAdInfo) -> Unit)?
Configuring with SxConfiguration

Using SxConfiguration there are multiple options to create a sequencer or a single ad slot. Note
that the configuration object controls all settings, macros and additional native tracking information
for both instream and out-stream scenarios. That also means not all options may apply to a specific
scenario (e.g. values in SxPlacement or the out-stream formatting options).

When in doubt use the default configurations by not providing a different one. They are listed in the
constants of SxConfiguration. INSTREAMand SxConfiguration. OUTSTREAMand must be
applied like this:

val config = SxConfiguration.INSTREAM. copy (
showMuteToggleButton = false
)

// for Instream
val sequencer = SxSequencer(this, controlOverlay, adSlots, config)

// or for Qutstream
val adView = object : SxAdView(context, null, 0) {
override val configuration = config

}

The following sections will outline some common use cases. Please refer to KDoc on
SxConfigurationfor an overview of all parameters.

Setting a desired bitrate and desired mime-types

The SDK will try to select a media file of the desired bitrate from the available media files in the
server's ad response. If the exact value is not present in the ad response, the SDK is going to
search for a lower bitrate media file and only if none is available, the SDK will select a media file of
higher bitrate.

In order to restrict the selection to certain mime-types, those should be set as environment
variable by handing the list of desired mime-types to SxMacros as an array.

SxConfiguration.INSTREAM. copy (
desiredBitrate = 1200
desiredMimetypes = listOf("video/mp4", "video/webm")

Passing informaton

Additional information is also considered part of the configuration and has to be definied at
initialization of the SxSequencer or SxAdView. There is a number of information, according to the
VAST standard, that should be available for reporting or ad requests.

SxConfiguration.INSTREAM. copy (
initialMuted = false,
placementType = SxPlacementType.Companion.UNDEFINED,
breakPosition = SxBreakPosition.PRE ROLL,
contentId = "Some identifier"

)

The full list of supported information is compiled in the following table for all supported macros and
configuration values (if default is empty the native SDK does not set a value here). The definition
of expected values is in line with standard VAST 4.1, section 6.

Value Effect Default
adCategories Content categories
appName Freely specified app name
package
name
appBundle VAST 4.1 standard-identifier

from

Context

apiFrameworks Player's feature support 7
blockedCategories Blocked content categories
0
Instream
breakP osition Position of the ad break in relation to content (4 for
out-
stream)
contentld Customer-specific content identifier
contentUri Customer-specific content resource identifier
devicelp Device IP address
domain Domain information
extension Defir_wes th.e position of an advertisment break inside an instream OTHER
configuration.
ifa Advertising Identifier
ifaType rida-Roku ID, aaid-Android ID, idfa-Apple ID
List of options indicating attributes of the inventory. Possible values:
skippable to indicate ads can be skipped, autoplayed to indicate
inventoryState ads are autoplayed with audio unmuted mautoplayed to indicate ads
are autoplayed with audio muted optinto indicate the user takes an
explicit action to knowingly start playback of ads
latLong user position as lat long floats
limitAdTracking Did the user restrict the use of advertising? 0

mediaPlayhead Current playhead of content stream
placementType One of the SxPlacementTypes
playerCapabilities List of player capabilities as string list
regulations Privacy regulations that apply
verificationVendors List of verification vendors

Define skip options for your app

The SDK supports options to skip ads. Sometimes this information is part of the VAST document
returned from the ad server.

A general skip option for all ads (which do not bring their own) can be set via skipAdDuration in
the creation of the SxAdSlot (Outstream) or SxSequencerAdSlot(Instream).

Tha value of skipAdDuration denotes the time period in seconds that will pass before the skip
button appears.

Any skip offset defined by the ad server will overwrite the general skip offset defined
programmatically in this setting.

It is possible to change the appearance of the button and the text by using the corresponding
resource settings skipButtonText and skipButtonStyle.

Using separation clips
It is possible, but not required, to specify separation clips which are played back at fixed places

within an ad slot. The definition of these separation clips and handling of the video files is done in
the source code of the Android app.

Note that handling of these configurations requires to first define a SxAdSlotDelegate and set the
configuration in SxAdSlotController or use the simpler interface of SxSequencerAdSlot object
first and then add Opener, Closer or Bumper to their initialisation.

val slot = SxAdSlot(getString(R.string.ad tag 5sec),
SxSequencerRelativePosition(0.0),
getString(R.string.default opener url),
getString(R.string.default closer url),
getString(R.string.default bumper url))

For the out-stream use case, define the separation clips via loadAd method of SxAdView.
Configuring out-stream placements

To configure out-stream placements there is a number of options available in the
SxConfiguration object. There is also a preset for out-stream, which is available as a static object.

Value Effect Default

Define what happens after the last ad has been played,

onEndBehaviour NOTHING (last frame stays), REPEAT (a repeat buttonis REPEAT
offered), COLLAPSE (Remove view into invisibility)

onEndBehaviorAfterSkip Similar to above, but for users who skipped the last ad REPEAT

initialIMuted Defines the playback configuration true

skipButtonlext Button text, in case skip ad is offered skip

skipButtonStyle StyleResource

repeatButtonStyle StyleResource

unmutelconStyle StyleResource

mutelconStyle StyleResource

showPlaybackProgress Whether a progress bar should be displayed

progressBarStyle StyleResource

title A title to display the advertising Advertisment

titleStyle StyleResource

Events

The events can be classified as informative events or as behavioural events that need to be
considered in regard to functioning of the application and general user experience.

Behavioural events

These events may require attention when it comes to displaying or stopping a content video. They
are expected in the order of the following list:

e ON_AD MANIFEST LOADED (ad server response has been parsed, information on the
upcoming slot is complete)

ON_AD _SLOT STARTED (ad slot has started playing)

ON_AD_STARTED (an ad started to play)

ON_AD_FINISHED (an ad finished playback)

ON_AD_SLOT_FINISHED (the last item has been played back)

ON_AD _SLOT COMPLETE (ad slot has reached its end)

Informative events

These events mainly cover standard VAST events or information on states that have been changed
by either player or user.

ON_AD_SCHEDULED
ON_AD_PLAYBACK_START
ON_AD_PLAYING
ON_AD_FIRST QUARTILE
ON_AD_SECOND_QUARTILE
ON_AD_MID_POINT
ON_AD_THIRD_QUARTILE
ON_AD_IMPRESSION
ON_AD_PLAYBACK_FINISHED
ON_AD'LINEARITY CHANGED
ON_AD_PAUSED
ON_AD_SKIPPED

Error events

Fired in case of errors
e ON_AD_ERROR

Whenever the SDK encounters a problem during loading, rendering there will be a feedback to the
publisher, based on the ON_AD ERROR event.
Tracking as defined in the VAST document will be fired.

Since the instream scenario relies on the publishers' implementation, it is important to implement
the interface method reportPlayerError.

This will notify the SDK of any playback issues that happen in the scope of the player. Of course
that results in an ON_AD ERROR event that will be reported back to the publisher.

An event of this kind does not signal the end of an ad slot or ad replay. It might trigger other
behaviour, such as fallback to buffet ads or new playback commands.

