
SMARTCLIENTIOS

smartclip SDK for native iOS apps

Version	history

Document
version

Corresponding	SDK
version

Corresponding	JS
core

editor

1.0 Native:	2.0.0	(iOS) Smartclientcore	4.3.0 Karl	Szwillus
1.1 Native:	2.1.2	(iOS) Smartclientcore	4.6.0 Karl	Szwillus
1.2 Native:	2.1.2	(iOS) Smartclientcore	4.6.0 Karl	Szwillus
1.3 Native:	2.1.3	(iOS) Smartclientcore	4.7.0 Karl	Szwillus

1.4 Native:	2.1.5	(iOS) Smartclientcore	4.7.0 Uli	Voigt,	Karl	Szwillus

1.5 Native:	2.2.0	(iOS) Smartclientcore	4.9.1 Uli	Voigt,	Karl	Szwillus
1.6 Native:	2.3.0	(iOS) Smartclientcore	4.9.1 Uli	Voigt,	Karl	Szwillus

Latest	changes
1.6 Bugfix: Timeout to end an adSlot, when the adTag could not be correctly parsed.
Added possibility to customize the UIAlertController for clickThrough to own needs
1.5 Improved visibility checking (instream and outstream) and fullscreen support
(instream)
1.4 Added information on Playback controls
1.3 Overall corrections
1.2 Company name change SpotX to smartclip
1.1 Improved ad pod Support; new AdError-Object

Contents
Introduction
Features

AdView-Settings and configuration
Providing neccessary information
Configuring the environment
Event-Callback
Retrieving ad and display information
Separation clips
Sequencing

Implementation guide

Introduction
The smartclip SDK for iOS is an SDK to display instream and out-stream
advertising in native iOS apps. It allows to display various types of video
advertisement formats.

Features

Control	and	display	of	ads
In the regular instream settings the video player is attached to the SDK to
display advertisement. It requires the implementation of an interface, which
will serve as connection to the ad server.

It is possible to use one or more ad tags for one ad slot and to configure
different types of additional separation clips. In addition a number of
additional parameters can be set for the specific environment to pass
information to the ad server and to control requested resources.

In an out-stream scenario the SDK also displays video advertisement and offers
a number of settings to control appearance and behaviour of the app.

Providing	neccessary	information
The interface for smartclip SDK allows to control environment and tracking
information.

overwriting Bundle-ID (for debugging and testing purposes)
supplying reporting/tracking information
supplying a unique advertising id (IDFA or self-generated)
adding meta-data on content and context

For a full list of possible information settings please refer to JazzyDoc files
in the folder apiDocs.

Setting	the	IDFA	as	provided	by	iOS

The IDFA should be passed over into the SDK if possible. Since the field is
not validating, another unique identifier could be generated within the app,
which can be used as a means of identification and tracking. The SDK relies on
the information passed and does not try to read a value from the system because
using IDFA requires special attention during the app submission process to the
App Store.

Configuring	the	environment
desired bitrate setting

desired mime-type setting
information on network/connection stability

Desired	bitrate	setting

Default bitrate setting of 1000kbps for ad replay can be
overwritten by providing a desired bitrate. The SDK will try to get as close to
the desired bitrate as possible from the available media files for each ad tag.
If the exact value is not present in the ad response, the SDK is going to
search for a lower bitrate media file and only if none is available, the SDK
will select a media file of higher bitrate.

Desired	mime-type	setting

Since support for different video formats varies on certain platforms it is
advised to include a list of preferred mime-types to the SDK, which helps the
selection process after parsing the ad response. This is relevant when using
external components for media playback instead of the AVPlayer or similar.

Information	on	network/connection	stability

Configure information on connection stability by using a NetworkReachability enum value
with
SCAdEnvironment.reachability = NetworkReachability
Available values are: reachabilityWWAN , reachabilityWIFI and reachabilityUnreachable .

Event-Callbacks
During an ad slot or ad session the SDK will inform about a number of state
information changes that can be accessed by registering a listener/delegate to handle
callbacks. This will allow the app to better interact with the advertising
content and integrate with the app's control flow.

If there is a registered listener for the onEventCallback it will receive all
status transitions of the Adview or the Adslot during playback. Its main
purpose is to help reacting to media playback states and possible errors,
or for native reporting of different kinds.

In case of an error, information is available in the getAdError method.
The error itself is triggered by an event that signifies playback, parsing or
empty delivery states.

Retrieving	ad	and	display	information
Utilizing the onEventCallback the application will get information about the
current state of the ad player. It starts with the signal of ON_AD_SLOT_START, the
interpretation of the ad server response, and will iterate through the
individual ads that are part of the slot. Callbacks follow the standard VAST
events, signalling quartiles and additional information on the type of the
ads. Please refer to the apiDocs to get information on all fields and methods
available for SCAdEvent .

Separation	clips
There are some advanced options available to cover more complex ad break
scenarios with multiple ads in one single AdSlot . Separation clips can be
inserted to signify the beginning or end of an ad break, as well as to separate
sponsoring ads from regular advertisement.

Sequencing	(instream)
The sequencing component allows to create a schedule for a complete content
session. It will automatically create and start AdSlots , as well as notify the
code if any seek or fast-forward/-backward actions are detected. In
that case the SDK returns respective ad slots and allows to reset the
scheduling. It can be used for various scenarios, even a quite simple preroll-
configuration, as it will take care of required monitoring and reporting tasks.

Implementation	guide
The SDK supports iOS version 9 and higher.

Contents	of	the	SDK	bundle
The smartclip SDK for iOS is shipped in a single zip archive with the following
contents:

SDK in three different build targets for universal, production and debug use
apiDocs
reference implementation
this documentation

How	to	work	with	the	reference

implementation
It is recommended to start from the reference implementation, which implements
all neccessary interfaces to start a simple project for both instream and
out-stream cases.

In an instream setting, where classes will be implemented directly by the
app, it is neccessary to implement the interface SCAdListener to connect an
individual playback solution to the AdSlots . Instead of implementing that
directly, we recommend to use the sequencer interface for all standard setups,
in which case the SCAdSequencerDelegate takes the place of the
SCAdListener .

Adding	the	smartclip	SDK	to	a	project
The smartclip SDK is shipped as an iOS framework file. To use the SDK just drag and
drop that file into a project. Activate Copy items if needed checkbox if the
framework file is not part of the projects directory.

Open project settings and select the target that the smartclip SDK is going to
be used with. Under the General tab the SDK can be added in the Embedded
Binaries section.

It is recommended to use the universal package (which is a combined device and
simulator version of the SDK) during development for the testing and debugging
process. For App Store releases the dedicated release package should be used.

smartclip SDK is now ready for use.

Activate	logs	and	debug	options
To get logging information set the debug logging via the static variable
loggingEnabled to true. By default the log level is Debug, it can be
changed using: SCAdLog.setLogLevel(Log<Level>) . Recommended setting for live
service is Error.

Implementing	a	basic	instream	ad	with

sequencing
For an instream use case start with SCSequencerViewController from the
reference app package to familiarize with the general setup of ad playback. On
iOS (other than on tvOS) smartclip SDK does not manage the player, but requires
implementation of listeners and delegates.

Initializing the sequencer:

/// tell sequencer about the content video
/// set SCAdConfiguration and a list of SCAdSlot models
private func setupSequencer() {
 /// Create the sequnecer and give it access to the playerController through its
facade protocol implementation
 if let facadeDelegate = avPlayerController as SCAdFacadeDelegate? {
 sequencer = SCAdSequencer.init(playerDelegate: facadeDelegate,
sessionController: sessionController)

 /// set this viewController as the sequencers delegate
 sequencer?.delegate = self

 sequencer?.contentURL = contentUrl
 sequencer?.configuration = self.configuration()
 sequencer?.adSlots = self.adSlots()

 /// sequencer needs to listen to player events
 avPlayerController?.eventListener = sequencer as? SCPlayerEventListener
 avPlayerController?.avPlayerListener = sequencer as? SCAdListener
 }
}

Add the SCAdSequencerDelegate which adds functions to restore ad slots to
SCAdListener protocol, as well as informs about the sequencers state:

extension SCSequencerViewController: SCAdSequencerDelegate {
 /// override point for changed presentationSize (called when presentationSize of
AVItem changes)
 func presentationSizeChanged(to newSize: CGSize) {
 }

 /// sequncer callback function to start content video
 func playContentVideo(with urlString: String) {
 avPlayerController?.playContentVideo(with: URL.init(string: urlString))
 }

 /// sequncer callback function to pause content video
 func pauseContentVideo() {
 avPlayerController?.pausePlayback()
 }

 /// sequncer callback function to resume content video
 func resumeContentVideo() {
 avPlayerController?.startPlayback()
 }

 /// slot restoration (example implementation - adjust if required)
 func userDidScrub(_ removedAdSlots: [SCAdSlot], currentRelativePosition:
CGFloat) -> [SCAdSlot] {
 if currentRelativePosition <= 1.0 {
 var reinsertedSlots = Array<SCAdSlot>()
 var index = 1

 for adSlot in removedAdSlots {
 let newValue = (currentRelativePosition + 0.1 * CGFloat(index)) > 1.0 ? 1.0
: (currentRelativePosition + 0.1 * CGFloat(index))

 adSlot.relativeSlotTime = newValue
 reinsertedSlots.append(adSlot)
 index = index + 1
 }

 return reinsertedSlots
 }
 return []
 }

 /// if playback or loading of content video throws an error
 func contentVideoError(_ error: Error) {
 displayAlert(tite: "Content Video Error!",
 message: String(format: "An error occured while trying to display the
desired content video. \nMessage: %@", error.localizedDescription));
 }

 /// callback method for SCAdEvents
 func onEventCallback(with info:SCAdEvent) {
 switch info.type {
 case ON_AD_SLOT_STARTED:
 self.adSlotStarted()
 case ON_AD_SLOT_FINISHED:
 self.adSlotFinished()
 case ON_AD_SKIPPABLE_STATE_CHANGE:
 self.skipButton.isHidden = false
 case ON_AD_STARTED:
 self.skipButton.isHidden = true
 case ON_AD_PLAYBACK_FINISHED:
 avPlayerController?.getAdInfo { [weak self] (adInfo) in
 if let unwrappedAdInfo = adInfo {
 if unwrappedAdInfo.variant == "commercial" {
 if let recentTime = self?.recentClipsTime, let duration =

self?.avPlayerController?.getDuration() {
 self?.recentClipsTime = recentTime + duration
 }
 }
 }
 }
 self.deleteProgressTimer()
 case ON_AD_PAUSED:
 self.deleteProgressTimer()
 case ON_AD_ERROR:
 avPlayerController?.getAdError { (adError) in
 if let unwrappedAdError = adError {
 NSLog("adError: \(unwrappedAdError.errorDescription) code: \
(unwrappedAdError.errorCode)")
 }
 }
 case ON_AD_MUTED:
 self.muteButton.setImage(UIImage(named: "Sound_off"), for: .normal)
 case ON_AD_UNMUTED:
 self.muteButton.setImage(UIImage(named: "Sound_on"), for: .normal)
 default:
 break
 }
 }

 /// when sequencer has finished sequence
 func sequencerFinished() {
 /// Do something, when the sequencer has finished...
 }

 /// if user clicks on ad and clickThrough is active, sequencer tells its delegate to
open landing page
 func displayClickThroughAlert(_ alert: UIAlertController) {
 self.present(alert, animated: true, completion: nil)
 }

 func adStartsPlayback(with url: URL) {
 if url.absoluteString != opener &&
 url.absoluteString != closer &&
 url.absoluteString != bumper &&
 url.absoluteString != contentUrl {
 createProgressTimer()
 } else {
 deleteProgressTimer()
 progressBar.isHidden = true

 }
 }
}

For the instream use cases the video player is not owned by the SDK, but must be
implemented by the user.
However we deliver an example of how it could be implemented, with the
SCAVPlayerController . There are some things
to be aware of:

The video player talks to the SDK with the help the SCPlayerEventListener .
For instance after successful loading of an advertisement video, the video player must call
the function loadAdSuccess()
on the eventListener, if loading of the video fails, the function loadAdFailure() must be
called:

private func observePlayerItem(change: [NSKeyValueChangeKey : Any]) {
 guard let oldState = change[NSKeyValueChangeKey.oldKey] as? Int,
 let newState = change[NSKeyValueChangeKey.newKey] as? Int else { return }

 switch newState {
 case AVPlayerItem.Status.readyToPlay.rawValue:
 if oldState == AVPlayerItem.Status.unknown.rawValue {
 eventListener?.playerEventCallback(with: EventTypeLoadedData)
 if avPlayer.currentItem == currentAdvertisementItem {
 eventListener?.loadAdSuccess()
 addTimeObserver()
 }
 startPlayback()
 }
 case AVPlayerItem.Status.failed.rawValue:
 if oldState != AVPlayerItem.Status.failed.rawValue {
 if avPlayer.currentItem == currentAdvertisementItem {
 eventListener?.loadAdFailure()
 eventListener?.playerEventCallback(with: EventTypeError)
 } else {
 avPlayerListener?.contentVideoError(avPlayer.currentItem?.error)
 }
 }
 default:
 break
 }
}

Also various events must be passed to the eventListener so that the SDK is informed
about the current state of the video player.
Please check the SCAVPlayerController for details.

Here is a list of those events:

typedef enum SCAdPlayerEventType {
 EventTypeLoadedData,
 EventTypePlay,
 EventTypePause,
 EventTypeTimeupdate,
 EventTypeVolumeChanged,
 EventTypeEnded,
 EventTypeError
} SCAdPlayerEventType;

Also the videoPlayer controller must implement the SCAdFacadeDelegate protocol,
through which the SDK tells the video player
when to load an advertisement video and asks the player for different values, like the
current time or if the video player is muted.

Implementing	an	instream	ad	without

sequencing
Using the sequencer is the recommended way of implementing any -- even the
simplest -- instream use cases, as it will take care of a lot of reporting and
tracking related tasks.

However, it is still possible to implement the SCAdListener directly and
to implement handling single ad slots.

In UIViewController the SCAdSlotController can be used together with
SCAdSessionController and SCAVPlayerController . The following code shows
neccessary calls to set this up.

class SCMobileSDKBaseViewController: UIViewController {

 private let sessionController = SCAdSessionController()

 // ...

 override func viewDidLoad() {
 super.viewDidLoad()
 avPlayerController = SCAVPlayerController.init(with: sessionController)
 adSlotController = sessionController.createAdSlot(withListener:
avPlayerController)
 sessionController.sessionStateListener = self as SCAdSessionStateListener
 avPlayerController.avPlayerListener = self as SCAdListener

 setupAVPlayerViewController()
 }

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidDisappear(animated)
 avPlayerController.eventListener = self.adSlotController as?
SCPlayerEventListener
 }

 override func viewWillDisappear(_ animated: Bool) {
 super.viewWillDisappear(animated)
 avPlayerController.stopAdSlot()
 }

This is not a complete listing of the corresponding class, but a neccessary
base setup. Helper methods are needed to create and populate an ad slot, load
files and control playback of the player instance. In order to implement
UIViewController this way, get in touch with smartclip for more detailed
sample code.

Implementing	a	basic	Out-stream	ad
Creating an Out-stream ad playback is similar to the instream ads, when it
comes to controlling abstract items like SCAdSlotController , but playback is
handled by the SDK.

In the reference app there is an example for implementing this scenario, which
starts with SCOutstreamBaseViewController and which can be used as a basic
template for an Out-stream placement.

class SCOutstreamBaseViewController: UIViewController {
 @IBOutlet weak var contentView: SCAdContentView!
 var adController: SCAdController?

 override func viewDidLoad() {
 super.viewDidLoad()
 adController = SCAdController.init(sessionStateListener: self as
SCAdSessionStateListener)
 adController?.delegate = self
 adController?.setContentView(self.contentView)
 }

It starts with creating the UIViewController with an SCAdContentView as an
outlet to be placed in the storyboard.

Above sections on monitoring by adding SCAdListener do apply as well.

Configuring	Out-stream	placements
To configure Out-stream placements there is a number of options available in
the SCAdConfiguration object.

config.customTitle = "Advertisement"
config.customTitleColor = UIColor.yellow
config.customProgressBarColor = UIColor.yellow
config.skipOffset = 3

config.clickType = ClickableWithConfirmationDialog

Please refer to the complete list of options from the JazzyDoc files in the
folder apiDocs.

Configuration	with	SCAdEnvironment	and

SCAdConfiguration
There are multiple possible ways to use SCAdEnvironment when creating a
configuration object. The environment is passed to SCAdConfiguration , which
is in turn used to configure SCAdSlotController .

Setting	a	desired	bitrate	and	desired	mime-types

The SDK will try to play the desired bitrate from the available media files.
The SDK will try to get as close to the desired bitrate as possible with the
available media files for each ad tag. If the exact value is not present in the
ad response, the SDK is going to search for a lower bitrate media file and only
if none is available, the SDK will select a media file of higher bitrate.

 let environment = SCAdEnvironment.init(macros: macros)
 environment.desiredBitrate = 2000
 environment.desiredMimeTypes = ["video/mp4"]

 let config = SCAdConfiguration.defaultOutstreamConfiguration(with: environment)
 config.adURL = advertisementUrl
 config.variants = SCAdVariants.init(opener: opener, closer: closer, bumper:
bumper)

 adController?.startAdSlot(with: config)

Defining	a	deviceType/network	manually

Use deviceType and a value for reachability (plus an optional
value for screenSize as specified below) to manually override the detected
device type (refer to apiDocs for possible values).

 let environment = SCAdEnvironment.init(macros: macros)
 environment.reachability = reachabilityWIFI
 environment.deviceType = deviceTypeTV

 // default screenSize, which is the built in screenSize of the iOS device, can be
overwritten
 // environment.screenSize = CGSize(width: 1000, height: 1000)

 let config = SCAdConfiguration.defaultOutstreamConfiguration(with: environment)
 config.adURL = advertisementUrl
 config.variants = SCAdVariants.init(opener: opener, closer: closer, bumper: bumper)

 adController?.startAdSlot(with: config)

Defining	desired	mime-types

In order to restrict the SDK to certain mime-types, those can be set as
environment variable by setting list of desired mime-types to
SCAdEnvironment as an array.

let desiredMimeTypes = ['video/mp4']
environment.desiredMimeTypes = desiredMimeTypes

Passing	additional	information

Additional information is also considered part of the environment and used in
the initialization.

let macros = SCAdMacros.init()

// add values here
macros.breakPosition = breakPosition
macros.appBundle = Bundle.main.bundleIdentifier!

let environment = SCAdEnvironment.init(macros: macros)

The full list of supported information follows (if default is
empty the smartclip SDK does not set a value).

Value Description
adCategories Content	categories
appBundle Bundle	ID
apiFrameworks API	Frameworks

blockedCategories
blocked	content
categories

breakPosition
Position	of	the
AdBreak

Possible	values:	SCBreakPositionPreRoll,	SCBreakPositionMidRoll

clickType
clickType	for
clickThrough
handling

Possible	values:	NotClickable,	ClickableOnFullArea,	

contentId
customer-specific
content	identifier

contentPlayhead
CONTENTPLAYHEAD
Current	time	offset

contentUri
URI	of	the	main
media	content	asset

domain DOMAIN
extensions Macro:	EXTENSION
ifa advertising	Identifier

ifaType
rida-Roku	id,	aaid-
Android	id,	idfa-
Apple	id
list	of	options
indicating	attributes
of	the	inventory.

inventoryState

Possible	values:
skippable	to	indicate
the	ad	can	be
skipped,	autoplayed
to	indicate	the	ad	is
autoplayed	with
audio	unmuted
mautoplayed	to
indicate	the	ad	is
autoplayed	with
audio	muted	optin
to	indicate	the	user
takes	an	explicit
action	to	knowingly
start	playback	of	the
ad

latLong
device	position	as
lat	long	floats

limitAdTracking
whether	user
restricted	use	of
advertising	ID

false

mediaMime
array	of	available
MIME	types

"video/mp4"

mediaPlayhead
current	playhead	of
content	stream

placementType
one	of	the
SCPlacementType

Possible	values:	SCPlacementTypeInStream,	SCPlacementTypeInArticle

playerCapabilities
list	of	player
capabilities	as	string
list

regulations
privacy	regulations
that	apply

verificationVendors
list	of	verification
vendors

connectionType SCConnectionType
Possible	values:	SCConnectionTypeEthernet,	SCConnectionTypeWIFI
SCConnectionTypeCellularUnknownGen,SCConnectionTypeCellular2G

uniqueIdentifier unique	identifier

Using	Opener,	Closer	and	Bumper	clips

SCAdVariants specify separation clips that are played back in prominent
places within an ad slot. Definition of these separation clips and handling
of the video files is done in the source code of the iOS app.

The setting of separation clips is integrated with SCAdConfiguration
as these clips are part of the final ad slot play back.

let variantObject: SCAdVariants = SCAdVariants(opener: <OpenerURI>, closer: nil,
bumper: nil)
let config = SCAdConfiguration.defaultConfiguration(with: <AdUrl>, variants:
variantObject)

adSlotController.startAdSlot(with: config)

Listening	to	events
To get notified about events from ads SCAdListener must be implemented
by the SCAdViewController . The listener provides the following callback.

// listener protocol which is informed about state changes from SCAdSDKController
@objc public protocol SCAdListener:
 class {
 // called on for every ScAdInfo.Type change
 // parameter controller: the parent controllers
 // parameter adInfo: current ScAdInfo
 @objc func onEventCallback(with controller: SCAdViewController, info:
 SCAdInfo?)
 }

The events can be classified by informative events, as well as behavioral
events that need to be considered in regards to functioning of the application
and user experience.

In error handling an additional call to the SCAdSlotController (or the
corresponding control class) has to be made explicitely and will be answered
with the SCAdInfo object.

case ON_AD_ERROR:
 adSlotController?.getAdError { (adError) in
 if let unwrappedAdError = adError {
 NSLog("adError: \(unwrappedAdError.errorDescription) code: \
(unwrappedAdError.errorCode)")
 }
 }

Informative	events

These events mainly cover standard VAST events or information on states that
have been changed by either player or user.

ON_AD_SCHEDULED
ON_AD_PLAYBACK_START
ON_AD_PLAYING
ON_AD_FIRST_QUARTILE
ON_AD_SECOND_QUARTILE
ON_AD_MID_POINT
ON_AD_THIRD_QUARTILE
ON_AD_IMPRESSION
ON_AD_PLAYBACK_FINISHED
ON_AD_LINEARITY_CHANGED
ON_AD_PAUSED
ON_AD_SKIPPED

Behavioural	events

These events may require attention when it comes to displaying or stopping
content video. They are expected in the following order.

ON_AD_MANIFEST_LOADED (ad server response has been parsed and the
information on the upcomping slot is commplete)
ON_AD_SLOT_STARTED (ad slot starts playing)
ON_AD_STARTED (an ad starts playing)
ON_AD_FINISHED (an ad finishes playback)
ON_AD_SLOT_FINISHED (last item has finished playback)
ON_AD_SLOT_COMPLETE (ad slot came to an end)

Error	events

Fired in case of errors

ON_AD_ERROR

Please also remember to implement the interface method contentVideoError .
This reports errors of the video player, but is also neccessary to create a
complete ad flow.

 func contentVideoError(_ error: Error!) {
 displayAlert(tite: "Content Video Error!",
 message: String(format: "An error occured while trying to display the
desired content video. \nMessage: %@", error.localizedDescription));
 }

